import numpy as np
import wandb
# 野生動物のクラス名を定義
wildlife_class_names = ["Lion", "Tiger", "Elephant", "Zebra"]
# 200枚の動物画像に対する正解ラベルをシミュレート (不均衡な分布)
wildlife_y_true = np.random.choice(
[0, 1, 2, 3],
size=200,
p=[0.2, 0.3, 0.25, 0.25],
)
# 85% の精度を持つモデル予測をシミュレート
wildlife_preds = [
y_t
if np.random.rand() < 0.85
else np.random.choice([x for x in range(4) if x != y_t])
for y_t in wildlife_y_true
]
# W&B run を初期化し、混同行列をログに記録
with wandb.init(project="wildlife_classification") as run:
confusion_matrix = wandb.plot.confusion_matrix(
preds=wildlife_preds,
y_true=wildlife_y_true,
class_names=wildlife_class_names,
title="Simulated Wildlife Classification Confusion Matrix",
)
run.log({"wildlife_confusion_matrix": confusion_matrix})